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Since the discovery of ferrocenedds),Fe! a milestone in the
history of modern organometallic chemistry, metallocenes and their
derivatives did not cease attracting considerable attention for their
fascinating aspects, from theory to industrial applicatfAsnost
intriguing feature of these so-called sandwich compounds concerns
the arrangement of the biscyclopentadienyl metal fragment, which _ N4
adopts either a linear or a bent structure, with the five-membered 'j‘"--ﬁ_ —
rings parallel or not. In addition to representing a synthetic
challenge, changing the geometry of a metallocene complex from
linear to bent or vice versa is of major significance for the control
of distinct physicochemical properties and/or reactivity and for the
evaluation of the relative importance of covalent, electrostatic, and
steric interactions in the metatyclopentadienyl bondingLinear
sandwich complexes, such as ferrocene and chromocene, were a)
forced to bend by the introduction of an interannular bridge between
the cyclopentadienyl ring&® On the opposite, it was possible to
make bent metallocenes linear by increasing the steric bulk of the
ring substituents. Thus, the plumboceneNE,SiMe,'Bu),Pb or
the titanocenes [(§MesR).Ti] (R = SiMes, SiMe'Bu) exhibit
parallel cyclopentadienyl rings, and the latter are reluctant to form
bent derivatives of the type (85),TiL, (L = PR, PMe;, CO)&7
Biscyclopentadienyl compounds of the f-elements constitute a large
and varied range of metallocene derivatives which are found
exclusively in a bent-sandwich configuration, whatever the 4f or
5f ion, the oxidation state, the electronic charge, and the nature
and number of auxiliary ligandsHere we present the synthesis
and crystal structure of the uranium compoundss{€s).U-
(NCMe)]X, (X =1, 1 or BPh, 2), the first linear metallocenes of
an f-element. In this novel type of-sandwich complexes, the
cyclopentadienyl rings are forced to be parallel through a new
synthetic strategy, that is the full filling of the equatorial girdle of
the (GMes),U fragment with donor ligands.

As a preliminary, we noted that tHél NMR spectra of (G
Mes),UCl, and (GMes),Ul,%10 are quite different in acetonitrile,
exhibiting signals ab .12'7 and 35.1, res_pectlvely, while th%._c Figure 1. Views of the dication [(@Mes);U(NCMe]?* parallel (a) and
Mes resonances are in thie9—18 range in benzene or pyridine;  perpendicular (b) to the cyclopentadienyl rings.
this observation strongly suggested thai\i€s),Ul, was converted
into a new compound in acetonitrile. Elimination of the solvent strength of the WJ-CsMes interaction. The average-+tN distance
under vacuum gave back 4i@es),Ul,, but concentration of the  of 2.547(8) A is similar to that measured in other acetonitrile adducts
solution led to the formation of dark brown crystals, suitable for of uranium(lv)22
X-ray diffraction analysis, of a solvate of [{¥les),U(NCMe)]l» The easy formation of highlights the major influence of both
1 (Figure 1) Most strikingly, the two cyclopentadienyl rings  the solvents and the counterions. Though acetonitrile is known to
are quite parallel, forming a dihedral angle of 0.5(2and are dissociate the &1 bond of U(lIl) and U(IV) complexes, thus
equidistant from and parallel to the plane defined by the metal center favoring the formation of polycationic speci¥$,1213the weaker
and nitrogen atoms of the five acetonitrile ligands. TheM€s),U- lability of Cl~ versus T explains why the dication [(§Mes),U-
(NCMe)]?" cation is the first metallocene with auxiliary ligands (NCMe)]?* could not be obtained from ¢®les),UCl,. However,
which is linear. The GMes rings are eclipsed, in a staggered as noted before, @es),Ul, was recovered when the crystals of
conformation with respect to the pentagon of nitrogen atoms, a 1 were dried under vacuum. Suppressing the back-coordination of
geometry which minimizes the intramolecular steric interactions. the counterion by replacement of the iodide with the less coordinat-
By taking into account the coordination number, the short average ing tetraphenylborate group afforded §@es),U(NCMe)][BPhy]»
U—C bond length of 2.81(1) A, in the range of analogous distances 2, which proved to be stable toward elimination of the MeCN
in bent-sandwich compounds of the typees).UX, reflects the ligands. Dark red crystals df were obtained in 51% vyield after
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treatment of (@Mes),Ul, with TIBPh, in acetonitrile!l4compound
2 was isolated with a better yield of 80% from the reaction of (C
Mes),UMe, and HNE§BPh, in acetonitrile!* The crystal structure
of the cation of2 is practically identical to that of.

Complexesl and2 open attractive perspectives in the chemistry
of linear metallocenes. Their novel structure raises the theoretical
problem of the nature of the metdigand interaction and of its
occurrence with other f-elements. Extending the variety of these
compounds is in progress, either by changing the donor ligands or
the metal and its oxidation state.

Supporting Information Available: Crystallographic data in CIF
format for 1 and 2. This material is available free of charge via the
Internet at http://pubs.acs.org.
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0.52 mmol), and acetonitrile (50 mL) was condensed into it. The reaction
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We already found that the MeCN ligandslodnd2 can be replaced with

neutral polydentate aromatic amines suchogshenanthroline or the

anionic cyanide groups (CN to give the anionic species [{Mes),U-

(CN)s]3~, without changing the linear configuration of the metallocene.

The synthesis and crystal structures of these complexes will be reported

in a forthcoming paper.
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